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Summary 

This paper  re-examines the physical assumptions which were 

made by  the originators of the Miner-Palmgren Rule for the calculation 

of fatigue  life and cites publications which show that these assumptions, 

called the linear cumulative damage hypotheses, are contrary to our 

present knowledge about actual fatigue behavior.    However, work is  also 

discussed which provides evidence  that Miner's Rule is better on the 

average  in engineering applications  than any other rule for fatigue  life 

which has been advanced.    The recent technical papers which resolve 

this  supposed contradiction are referenced and the implications of 

their results explained in full detail. 

These papers  show that the linear cumulative damage hypothesis 

is unnecessary in  the derivation of  the Miner-Palmgren Rule for the 

calculation of  fatigue life by constructing an alternative stochastic 

model for which this rule does give the expected life.    However,  using 

the  original Miner-Palmgren Rule disregards  the effect of load order. 

A more  realistic model would be a generalization of Miner's Rule which 

takes  Into account   the knowledge gained from programmed  load studies 

of  load order  influence.    Moreover,  it  should recognize  that  actual 

loading environment  itself frequently may be  stochastic  in nature. 

The  results  of  a paper which made  these  assumptions  is discussed here. 

Some  of   the   implications  of  combining   these results with  a 

statistical   law  for  the variability of  fatigue  life about  its  expectation 

are  examined.     This   law is constructed  from  a general class  of  two- 

parameter distributions  including  the  log-normal and Weibull  as  special 
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cases.     The assumption  that   the shape  parameter  of  the  fatigue  life 

distribution is  a constant  of   the material which  can be determined 

from prior data is  introduced  and  the  sample  theory  is  provided  to 

utilize  the data accumulated  in small  fatigue   life   tests  for details 

in order to determine  this value. 

Lastly, we show that  one  is able  to give  a definition of  scatter 

factor as a precise  concept  with a pre-assigned  probability of  failure; 

thus  it  is possible  to establish a warranted  life  in   terms  of  fleet 

or detail exposure.     This may  allow the elimination,   in  the engineering 

design process,   of  some  of   the present  conservatism  inherent  in  the 

use of arbitrary scatter  factors which  is necessitated by uncertain 

knowledge and  theory. 
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Introduction 

The basis for  the calculation of fatigue life has required knowledge 

of the fatigue strength of the component,   the loading spectrum and  the 

Imposed scatter factors.     The early methods  of analysis established  the 

fatigue strength from a  limited number of  fatigue  tests at various  constant 

stress levels,  then obtained flight measurements  from which a vibratory 

load spectrum was derived.    Lastly,  scatter factors were applied to the 

test results and a safe life was calculated by means of some rule, usually 

Miner-Palmgren,  using the load spectrum. 

In the past,   the scatter factors   used were  somewhat arbitrary and 

neither the stochastic nature of fatigue strength nor the statistical 

requirements  for adequate  testing were fully understood; moreover,   there 

was considerable argumentation about which fatigue  life rule should be 

used.    Nevertheless,   the determinations made were  in the main successful  in 

reducing catastrophic  failures to an acceptable   level. 

The reasons  for this  success may  lie  in the adoption of considerable 

conservatism either in  the flight spectrum,   in  the scatter  factors  or in 

the fatigue life rule.     But knowledge,  both experimental and theoretical, 

is necessary to illuminate  the exact reasons.     If this knowledge  could be 

obtained,  a refinement  of the design process would be possible  through  the 

elimination of the conservatism which is now necessitated by our uncertain 

knowledge and  theory.     What is needed  is  to make  use of the knowledge of 

load order influence acquired in programmed  load  studies,  taking into 
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account ttu- JnfJuonco of sample sizes in the statistical analysis of 

failure data and the fact that the actual loading environment is stochastic 

in nature in the calculation of the safe fatigue life. 

In the followinc nat^es we present a synopsis of some recent work on 

the Important statistical questions which arise in problems of determining 

fatigue life. 

1. A Formula for Expected Life 

By the early sixties there had been such a proliferation of mutually 

incompatible theories for the calculation of fatigue life that several 

comprehensive studies were undertaken to compare them. Two of these were 

sponsored by the U.S. Air Force.  One, in 1953, was of a theoretical nature, 

see [1], and the other, completed in 1962, see [2], was tn engineering 

evaluation of the extant methods for the prediction of fatigue life. The 

conclusion of the second report contained the statement:  "The statistical 

nature of many facets of the fatigue problem precludes hope of any specific 

fatigue life prediction of a single article. The best that can be achieved 

is broad comparisons of the expectations of new structures compared with 

current and past fleet performance... From this study the use of the Linear 

Cumulative Damage Hypothesis (Miner's Rule) is recommended as best qualified 

from the standpoint of simplicity, versatility and of sufficient accuracy 

(in view of other intangibles in the problem) for use in design." 

The words "Miner's Rule" and "Linear Cumulative Hypothesis" referred 

to a result in a paper published in 1945 by M. A. Miner in [3]. This was 

in fact an independent derivation of a formula given earlier by A. Palmgren 

in 1924, see [4]. 

A disadvantage of a "rule" is that the conditions under which it can 

be used are not stated, usually because they are not known, whereas a 
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mathematlcal theorem has an explicit hypothesis which always gives 

sufficient and sometimes necessary conditions. 

The original assumptions, under which Miner proved the rule, 

became known as the Linear Cumulative Damage Hypotheses:  to wit, 

I.  a)  Each specimen can absorb the same amount of fatigue 

damage and when that amount is attained failure occurs. 

b) The amount of damage absorbed by the material in any 

one cycle is determined only by the load during that 

eyele. 

c) The total damage absorbed by the specimen under a 

sequence of load cycles is equal to the sum of 

damages absorbed in each cycle during the sequence. 

The famous result called "Miner's Rule" is contained in 

Theorem 1:  (Miner [3]) 

If hypotheses I hold and there are only k possible load cycles 

where v.  equals the number of cycles to failure under repetition of the 

.th 
1      load cycle,   then a loading spectrum which contains    n.     applications of 

the  i       cycle  for     i=l,...,k    can be  repeated    v    times until   failure where 

i=l    i 

The contumely which has been heaped upon Miner's Rule,  as  expressed 

in   (1.1), has been based on the simplistic and unrealisulc nature of  the 

hypotheses   I.     The obvious question is:    How can it be  that such a rule 

is in some average sense good   (in fact, best  of those  compared),  by 

empirical verification as in   [2], when the hypotheses  are  known to be 

false?     The  answer  is just as  obvious:     The  conclusion must be   true  under 

more general  conditions. 
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In 1965 a study was begun to try to replace all of the detorrainistic 

assumptions made by Miner in I with stochastic ones which were more realistic. 

Tho alternative hypotheses, published in 1963 in the SJAM Journal  in [5], were: 

II. i) Fatigue failure, due to the growth and extension of 

a dominant failure crack, occurs when a (random) 

initial length W is reached. 

li) The (random) incremental crack extension Z. 

during the i  cycle has a distribution depending 

only upon that cycle. 

iii) For each i=l,2,... the random variable Z  is 

non-negative and has a distribution with an 

increasing failure rate. Moreover, the partial 
n 

sums S = 2, Z.  are statistically independent 

of W for all n*!^,... . 

We now state  the relevant conclusion of that investigation as 

Theorem 2:     (Birnbaum,  Saunders  [5]) 

If hypotheses  II hold and we let    N.     be the  (random) number of 

cycles to failure under repetition of the i      cycle with finite mathematical 

expectation    v.  = EN,    for    i=l,...,k,    then the random number of times a 

spectrum, containing    n.     repetitions of the i      cycle, can be applied 

until failure has finite expectation    v    bounded by 

- 1 < v; < -r—i  . (1.2) k    n. —     —   k      n. 

i=l vi 1=1 vi i 

The point is that the expression for v given in (1.1) lies between the 

bounds given in (1.2).  Moreover, one can begin to sec that if Miner's 
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Rule did in fact predict only the mean, that statistical variation 1» 

measurements would naturally occur about this value but on the average 

it would be correct. Also, we could expect a contribution to ihe dispersion 

of the estimate about the true expected life because of sample fluctuation In 

estimating the v., 1=1,...,k. 

There are only two points that I wish to discuss about 11. The 

first is that the assumption of crack extension being functionally 

independent of the preceding loads could only be an approximation to 

reality in the early stages of crack initiation and growth. It is known 

to be false at later stages, see [6]. The second point of possible 

contention, namely increasing failure rate (IFR), was justified in [5] 

by the "rip in the screen door" model which we now repeat. 

Consider a macroscopic crack within a material which, to fix ideas, 

we picture as follows: 

Figure 1 

For a given stress imposed let U be the (random) number of bonds broken. 

Let q.  be the. probability that the 1  bond is broken given that the 

st 
(i-1)  bond is broken. 

It is intuitively clear that for a giver stress the probability of 

rupture, given the preceding bond is broken, should decrease the farther 

away the bond is from the crack tip.  But it can be shown, sec [5], that 
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E[X-x|x>x] <^ EX   for all   x > 0. 

This concept was introduced in reliability studies in 1964 in [7]. 

Using this concept we can formulate a third set of hypotheses: 

III.  1° Fatigue failure, due to the initiation and growth 

of a dominant fatigue crack, occurs when a (random) 

critical size W is reached. 

2° The i  incremental extension during the last oscillation 

of the history X,  is a non-negative random variable 

z!(X.) depending only upon X   .    The Z(A)  for all 

affixes i,j are mutually independent random variables 

independent of W. 

3° The incremental growth random variable Z(X)  for all 

affixes is an NBUE random variable. 

4° There exists a finite set of loading oscillations, 

say 0,  = (u« w. } , such that for any admissible 

loading history X    we have an equivalent w. e fi, 

written X = UJ.,  for which in distribution ZO) = Z(co,). 

Let us comment on the degree of generality we have postulated. 

The incremental crack extension may depend upon all the loads previously 

imposed during that spectrum's repetition as well as the actual propa- 

gating load.  The incremental growth random variables are assumed to 

satisfy the very weak NBUE criterion, which is more general than the 

MMM 
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IFR class. This means that for a given load, knowing the fatigue 

damage exceeds a given amount, wo conclude that the expected residual 

fatigue damage from that load is less than the expected damage was 

from the load before it was applied initially. This would seem to be 

virtually undeniable.  We also assume that there exists a set of loading 

oscillations '.1    to which we refer for fatigue damage assessment whose 

relations have been measured. These are often presented in what is 

called the Wöhler diagram or S-N plot. 

We can now state a result from [8] concerning programmed loads. 

Theorem 3: If the hypotheses III are satisfied, then each 

programmed repetition of the spectrum X results in a sequence of 

Independent replications of the random crack growth 

Y(X) = I    Z^X1) 
1=1 

which are NBUE.  If NY, ,.  is the random number of spectra which can 

be sustained until faiure, it has finite expectation bounded by 

1 < ENV/,. < -i—^-rrr (1.3) k n, (X)    -  Y(X) - k n. (X) 
y -J— y  _j— 

where 

J     i>l      J     J     vwj7 

and |TT| is the indicator function of the relation n    being one if 

true and zero otherwise. 

Let A denote a random function taking values in the space of 

admissible load functions £.    Assume a random  load    A_ = (A..,A ,...) 

where each A  is an independent replication of the random spectrum A. 

-■- • ■ ■ Mft^^u 
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We now state another result given in [8] which concerns  random 

spectra. 

Theorem A:    If hypotheses  III are satisfied,  then the expected 

number of random spectra which can be sustained until failure,  is 

bounded below and 

k    En,(A) -     Y(A) 

1   —l 
1 < ENW/1,. (1.4) 

1        VJ 

To obtain an upper bound,  analogous to that given in  (1.3), 

appears to be mathematically difficult.    In fact we found it necessary 

to make an additional assumption. 

The incremental damage    Z(X)    during the last oscillation of the 

spectrum    X    has a complementary distribution (unity minus the distribution) 

we label    R(x:X)    for    x > 0.    We now make the assumption: 

5°    For any    x > 0,    R(x:X)     is a convex function of    X    over the 

convex space   £, 

The physical plausibility of this assumption is discussed  in  [8].    We 

obtain an upper bound in 

Theorem 5:    If  III and 5° are satisfied,  then we have,  in the 

notation of Theorem A, 

Ä V1 

For the usual situation where each oscillation of stress would cause 

2        6 
failure in between 10  and 10  repetitions, we conclude that the random 

number, say N, of times the spectrum A formed from such oscillations 
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can bo repeated has  expectation given approximately by 

EN = k En.(A) (1-6) 

1   —^  

We shall,   in what  follows, assume that  (1.6)  holds exactly. 

As a final comment,  it well may be that  the probabilistic structure 

of    A    which arises in practical applications may contain a form of 

symmetry so that    En. (A)    is virtually equal to the actual count of 
•J 

oscillations of a particular type and thus would appear to be independent 

of order. This would account for the closeness of Miner's Rule in the 

original form to the true value of the expected life. Moreover, the 

inequality given in (1.4) accounts for conservative tendency in practice. 

And lastly, we note the formula (1.6) is almost identical to the one 

given by Freudenthal and Heller in [9] where instead of En.(A)  they 

have utilized what they termed "empirical interaction factors". 

2.  A Connection with Service Life 

Fatigue tests for life length are recorded in number of cycles to 

failure.  The distinction between the discrete random variable number of 

cycles and the continuous random variable life time is not usually 

maintained since it is often assumed that there is a known relationship 

of cycles per unit time in service. Let us assume that the fatigue life 

variability exhibited for a given detail under any loading regime and 

environment is a non-negative random variable which can be described by 

the follov.'ing general class: 
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A0 The observed faMgue life X has an unknown distribution 

within the two-parameter family, defined for given F, 

by 

P[X <_ x] = F[(x/3)a]   for   x > 0 

where    a > 0    is  the shape parameter and    ß  >   0    is the 

scale parameter   (often called  the characteristic life). 

Note  that  this   formulation includes many of  the usual models Including 

the  log-normal and the Weibull by proper specification of    F. 

Of course, we could formulate a model with unknown scale and 

location parameters by considering    log X    as  the observable variate 

and because of  the extreme variability in fatigue life observations  it 

is  frequently  the logarithm which is used in engineering study.     However, 

we prefer to use the former model and there is an easy  transformation 

from one to the other. 

Let    X-    be the random variable with distribution    F,    then 

X =  ßxj     , An X = Jin ß + ^ £n XQ. (2.1) 

We now make assumption 

B0    The shape parameter    a    for the distribution  of    X    remains 

fixed within the family. 

Thus we see the variance of the logarithm of service  life depends  only 

upon    a    and the choice of    F. 

The whole point  of this  discussion is one should  choose statistical 

procedures which do not depend strongly upon the choice of    F.     One  should 

make estimates  and reach conclusions which arc  the same  for a rather wide 
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class of  the   choices of    F    at which nature may arrive   (and of which 

we must  ultimately remain  ignorant). 

The verification of B0  represents a non-trivial engineering and 

statistical   task.    A document which  represents a start  in this  direction 

is   [10].     It  provides specific statistical methods for the  treatment of 

the  type  of data obtained in fatigue  tests for the estimation of    a. 

It also classifies from prior data  the conditions of practical concern 

under which     a    may be considered constant and then determines  this value. 

Thus  it   is possible to determine  a model so that sound statistical 

prediction can be based on one observation which can be used to estimate 

f3..    We shall be concerned here only with A0,  B0  in so far as  they relate 

to the assumptions of the previous  section.    Recall    A    denotes  a random 

spectrum  (of  random duration    M) where all the oscillations were assumed 

to be of  the  same duration.    For the representation of service  life this  is, 

of  course,   a  fiction of mathematical  convenience. 

Let LT(t) be a stochastic process which incrpa^es linearly from one 

integer value to another. The length of time between each integer represents 

the time between each oscillation. Hence A[U(t)I, t > 0 represents an 

actual random loading as encountered in service with random changes in both 

amplitude and frequency with t denoting real time. The service time to 

complete the spectrum A is random and is expressed by L = U (M), the 

random  time   to  complete    il    oscillations. 

   ■ tm  
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Let T denote the total service life under usage A(U), then 

T = X L, 
j=l 

,th 
Tjhere L ,  the length of ]      repetition of the spectrum, 

for j=l,2,..., are independent and identically distributed 

independent of N. That is to say, failure is a result of the number 

and type of oscillations and not of the length of time between (at least 

for the range of frequencies we are considering) . Hence from Theorem 4° 

ET = (EN)(EL) = 
EL 

k En, (A) ' 

1   Vj 

(2.2) 

But from (2.1),  ET = ßg(a) where g is a functional of F. But 

also from A0 and B0 we see v. = ß.g(cx) is the expected life and ß 

is the characteristic life under repetition of oscillations of type j. 

Thus it is that Miner's Rule allows the computation of characteristic 

life under a random usage spectrum A(U) as 

k En (A) 
ß = (EL)/ I   -f (2.3) 

j=l  v2 

This conclusion has been pointed out previously in a less general 

context in [11]. 

The great utility of the modified Miner's Rule, as expressed in 

(2.3), coupled with Assumptions A0 and B0 is the statistical quantification 

of scatter factor.  Suppose that characteristic life B as calculated by 

(2.3) is determined, then with a estimated from prior data by the 

methods presented in [10] we set the safe life  t  at 100(l-c)% 

confidence where we take t    to be small.  Thus  t  is the life before 

which failure will occur with probability e  and is given by 
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te = ßLF'
1^)]1^. (2.A) 

Hence the reciprocal of the scatter factor in (2.4) is 

[F  (c)]    which va^ae can be determined for many choices of F 

and the most stringent one taken. Or alternatively, the usually 

applied scatter factor can be assessed as to the implied level of 

confidence by the use of (2.4). 

Conclusion 

In this expository note we have tried to point out the ubiquity 

of the Miner-Palmgren Rule for the calculation of fatigue life by show- 

ing that from a rather general and plausible, mathematical and 

probabilistic framework it appears as the expected value of stochastic 

fatigue life. These results explain its empirically verified utility 

and the difficulty of supplanting it with other "rules". We also show 

how such a result fits nicely in theory into any two parameter shape 

and location model for the calculation of safe service life. 

Lastly, we do not pretend that any particular theory, such as this, 

can be the final word or that it is impossible that further knowledge of 

the physics of material could vitiate the model we have employed, such as 

-< beiiift a constant of the material.  However, "e do think that it does 

indicate that deterministic models for fatigue should be reassessed. 

...,... -, -^... 
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